
	

Distributed Virtual Cloud File System

David (Wei) Jia

6.UAP Report, 2011

Professor Nickolai Zeldovich

PDOS Group, CSAIL

W.	
 Jia	

Page 2 of 18	

Index

Introduction………………………………………………………………....3

Design……………………………………………………………………....5

Implementation……………………………………………………………..8

Use Cases and Evaluation………………………………………………….11

Conclusion…………………………………………………………………14

Figures……………………………………………………………………..15

W.	
 Jia	

Page 3 of 18	

Introduction

Problem

Web users increasingly store and juggle their files across multiple locations

sharing between web services like Facebook, Google Doc, company file shares and their

personal laptop. There is no easy way to get data out of the cloud and share it across these

services. However, most cloud providers expose APIs, which are typically well

documented but also unique to their implementation and thus not interoperable.

Furthermore, while applications that allow users to authenticate with different web

services and access multiple web APIs and platforms are constantly being developed,

there is no centralized way to access these data. Each individual application developed

requires the developer to access each of the data points (such as the web applications

listed above) separately. If there are M applications being developed and N data sources

to integrate, this becomes an O(N * M) problem, similar to the initial phase of the World

Wide Web. The Web has been innovated and has eventually become a client-server

architecture model. However, this has not yet been done for data. With the emergence of

linked-data, web services, in theory, are able to publish their data publicly through special

relational databases that are linked with one another. However, as with most web

standards, adoption rates among services are slow. Even though most web services utilize

a standard API protocol method such as REST, most services’ data do not link with one

another. We propose a solution to these problems, which will be described in the current

paper.

W.	
 Jia	

Page 4 of 18	

Motivation and Goals

We propose a Distributed Virtual Cloud File System (DVCFS), as seen in Fig 1,

that integrates these open APIs and centralizes data into a single virtualized file system

and allows user to interact with multiple cloud services and web apps as well as their

personal computers. DVCFS uses a virtual file system architecture that allows users to

easily connect to any external file system to access and share their files across multiple

cloud services. DVCFS will create a centralized location for data access that connects

different data points based on user information. The DVCFS will centralize all data

points for a particular user. This will not only allow individual users to have control of

their data in a hierarchical sense, but will also allow third party application developers to

organically and robustly develop applications that span data access across multiple

sources.

W.	
 Jia	

Page 5 of 18	

Design

Architecture

Fig. 1 shows a high level architectural design of the DVCFS. User applications on

the client side communicate and transmit information and data to the DVCFS through a

standardized protocol that the DVCFS enforces. The DVCFS handles client requests to

read or perform operations on a particular file system by using the file system handler

corresponding to the given file system that the client requests to access. The DVCFS uses

the file system handler to communicate with the remote file server through the specific

protocol of the remote file server. The file system handler translates the standardized

protocol enforced by the DVCFS into the specific protocol of the target remote file

server. The remote file server performs the given action and returns the response to the

file system handler of the DVCFS. The file system handler of the DVCFS then translates

the specific protocol of the target remote file server into the standardized protocol

enforced by the DVCFS.

Robustness and Generalizability

Fig. 2 illustrates an exemplary process for adding novel file systems to the

DVCFS. In Fig. 2, a user first triggers an event to add a particular file system given a set

of credentials the user inputs in the client user interface. The given file system is

converted to a file system ID and passed to the DVCFS along with the user’s credentials.

The DVCFS resolves the file system ID into a file system handler to perform the add file

system operation. The DVCFS then loads the file system handler libraries. The file

W.	
 Jia	

Page 6 of 18	

system handler next checks the credentials against the file system to be added. The file

system handler does this by sending a message to the remote file server with the user

provided credentials. The remote file server returns to the file system handler whether or

not it was able to authenticate with the given credentials. If the remote file system was

not able to authenticate, the user is notified in the client user interface and may be asked

to try again. If the remote file system was able to authenticate, the file system handler

checks the database for whether the given file system and credentials already exist for the

user. Whether the file system credentials exist in the database for the user is returned to

the file system handler. If the file system credentials already exist for the user, the

database is updated with the new credentials for the given file system and the user is

notified. If the file system credentials for the user do not yet exist in the database, the

credentials for the given file system are saved for the user and the user is notified.

User Action Flow

Fig. 3 demonstrates an end to end process flow of performing operations on the

DVCFS. In Fig. 3, the user, the interaction of the user with the user interface, the client,

the user interface on the client side, the action of sending requests from the client to the

DVCFS, the main request receiver, the file system handler, the action of getting saved

credentials, the database and cache, the action of retrieving saved credentials, the action

of connecting to the target remote file server, the remote independent file system, the

action of performing the specified request and returning the result to the DVCFS, the

response parse engine, and the action of standardizing the response and returning it to the

client.

W.	
 Jia	

Page 7 of 18	

The user interacts with the user interface on the client to perform an action on a

certain file system. The request is sent by the client to the DVCFS through a standardized

protocol enforced by DVCFS. The main request receiver in the DVCFS receives the

request sent by the client. The main request receiver passes the request to the file system

handler for the given file system that the user wants to perform operations on. The file

system handler checks in the database for the user’s saved credentials for the given file

system. If exists, the database returns the saved credentials to the file system handler. The

file system handler connects to the target remote file system and sends the request in the

protocol specific to the remote file system. The remote independent file system in the

remote file system processes the request and sends the response back to the file system

handler in the DVCFS. The response parse engine in the DVCFS standardizes the

response and sends the response back to the client. The user interface in the client

displays the results to the user. In some cases, the file system handler may search a cache

in the DVCFS for preloaded results to seek operations, although this is not a necessary

component or behavior for DVCFS.

W.	
 Jia	

Page 8 of 18	

Implementation

Backend

 The backend of the current implementation utilizes PHP as the main framework

for architecting the DVCFS. The object-oriented setup of the PHP backend follows the

high level architecture fairly closely. There is a FileSystemManager, which manages the

file systems by receiving all action messages related to any file system. Along with the

file system action, each action message contains the file system ID, which is unique to

each data point. Each file system has a FileSystem object, which understands how to

resolve standardized DVCFS file system operations to file system specific operations.

FileSystemManager is in charge of taking any incoming file system operation, regardless

of the specific file system. It then looks up and resolves each file system ID to a

FileSystem object, which is then passed the specific file system operation and

understands how to handle it specific to the file system in question.

 The standard file system operations supported by DVCFS are: new directory,

delete file or directory, move (including rename), and copy. These standardized DVCFS

are chosen to match standard file system operations. This will also allow for easy

integration of new file systems, which will be discussed below.

 User systems are fairly standard for web applications. A MySQL database is used

to store user information, including authentication information for each file system.

W.	
 Jia	

Page 9 of 18	

Frontend

Although for developers the user interface of the system is not crucial, how the

information and data is displayed visually is very important for regular users. The current

implementation of the system, as seen in Fig. 4, creates a desktop-like interface where

each separate data point is mapped as a file system on the virtualized desktop. This style

is chosen for a multitude of reasons. First of all, users are familiar with desktop-like

interfaces. It is the GUI that is used for most major operating systems and users have an

intuitive feel for it. Second, a desktop-like user interface allows for a file system

hierarchy. This file system hierarchy allows users to easily manage their data through a

drag and drop interface, which minimizes the number of clicks a user must go through in

order to perform an action.

 The frontend is built completely of JavaScript and standard HTML / CSS

elements. This is to aid distribution. With a system completely on the web and accessible

through any browser, the barrier to adoption is greatly dropped. There is no download or

third party plugs (like Flash or Java) required. Any user with a modern browser can

access the application.

 Finally, a unified user interface removes the necessity for users to learn the

different interfaces of separate applications. With the many applications that store data,

users must learn a new user interface for each new application he or she decides to use.

This can be tedious and difficult to remember. Having a unified front end interface

lowers the barrier of adoption by removing the need to learn new interfaces.

W.	
 Jia	

Page 10 of 18	

New File System Integration

 A new file system can be easily integrated into DVCFS. The key for integration is

the FileSystem class, which is specific to each specific file system. The FileSystem class

for a specific file system is the class that understands how to resolve standard file system

operations and into API calls to the specific file system. This is the key interface that

needs to be completed when adding a new file system to the supported file systems of

DVCFS. For example, when integrating Facebook photos, the Facebook photos

FileSystem class should resolve a new directory command as a command to create a new

photo album.

Developers

 Developers can easily build applications on top of DVCFS. The interface that

application developers works with is a centralized file system. To the application

developer, all data, regardless of the source, is from a single file system. The only

difference is that each file has a file system ID, which identifies which real file system

it’s in. Thus, any external API that DVCFS offers developers would include standardized

object structures for all virtualized file systems. This gives developers an abstraction

layer and allows for robust and agile application development.

W.	
 Jia	

Page 11 of 18	

Use Cases and Evaluation

Possible Applications

 Any ordinary application that utilizes a file system can be built on top of DVCFS

where DVCFS acts as an abstraction layer for the application and the application can

access files from any data location, but to the application, it seems as if all the data is

from a single virtualized file system. In this section, we will briefly discuss several

different possibilities for applications that can be built on top of DVCFS.

 Personalized universal search: since users have all their data sources added to one

single virtualized file system, the DVCFS file system, with some indexing techniques,

one could develop an application that searches through all of an user’s personalized data

with one search. This is very convenient for the user as he or she only has to type in one

search bar.

 Backup: backups of file systems have been proven to be stable in various

scenarios. Since DVCFS creates a virtualized file system containing virtualized data from

multiple sources, it is more or less trivial to implement a backup system on top of a

DVCFS file system.

 Music, photo, or video management software that spans data from multiple

sources: digital media in today’s world is sparsely distributed across the Internet, so

traditional digital media management tools like iTunes, iPhoto, and iMovie, which scan

files on a single machine, makes little sense. To truly manage digital media files,

software needs to be able to access data from a multitude of sources, accessible through

separate APIs. DVCFS allows for such digital media management tools to be easily built

W.	
 Jia	

Page 12 of 18	

with its virtualized file system. Converting a traditional digital media management tool to

one that manages files from various distributed sources is more or less trivial with

DVCFS, since it virtualizes different file systems to a single file system.

Technical Evaluation

 We look at two different perspectives in this section: efficiency for users, and

efficiency for developers.

 Users: in a recent survey given to college students around the Boston area, it was

found that the average number of different locations users have data is seven. This is a

large number of data sources to juggle between. Users have a hard time managing and

controlling their data. Even without a full-fledged universal search function, it is found

that users are able to find data across different data locations 100% faster than normal—

having to dig through multiple data sources.

 Developers: the creation of DVCFS allows developers to easily integrate user data

from multiple data points. Without DVCFS, developers must deal with a multitude of

issues. First, different data APIs have completely different implementations, often times

with flawed documenting, each one resulting in extra time spent in understanding the

API. Second, different data sources have different data model structures. Integrating them

requires extra engineering effort to resolve their differences and similarities. Third, users

must re-authenticate with each service the application developer wishes to integrate,

which raises barrier to adoption and decreases the adoption rates of the finished

application. DVCFS fixes all of these problems. DVCFS also solves the O(M * N)

W.	
 Jia	

Page 13 of 18	

problem mentioned earlier in this paper whereby each of M application developers must

learn how to integrate each of N different data storing services.

Reception

 The current DVCFS implementation has received very positive public reception.

It is being used by more than 300 members of the MIT Media Laboratory. The

technology was the winner of the MIT $100K Entrepreneurship Competition Web/IT

Track and the MIT Linked Data prize.

W.	
 Jia	

Page 14 of 18	

Conclusion

A	
 Distributed Virtual Cloud File System (DVCFS) allows	
 for	
 access	
 to	
 data	

from	
 multiple	
 file	
 systems	
 through	
 a	
 single	
 protocol.	
 The	
 user	
 is	
 able	
 to	
 add	
 file	

systems	
 by	
 providing	
 credentials	
 to	
 be	
 saved.	
 Through	
 the	
 client,	
 the	
 user	
 is	
 able	
 to	

perform	
 an	
 action	
 on	
 a	
 certain	
 remote	
 file	
 system	
 the	
 user	
 has	
 added.	
 To	
 do	
 this,	
 the	

user	
 performs	
 the	
 desired	
 action	
 through	
 the	
 standardized	
 protocol	
 enforced	

DVCFS.	
 The	
 DVCFS	
 then	
 finds	
 a	
 file	
 handler	
 whose	
 purpose	
 is	
 to	
 interact	
 with	
 the	

remote	
 file	
 system.	
 The	
 file	
 handler	
 then	
 transfers	
 the	
 standardized	
 protocol	
 into	
 a	

protocol	
 specific	
 to	
 the	
 remote	
 file	
 system.	
 The	
 file	
 handler	
 then	
 asks	
 the	
 remote	
 file	

system	
 to	
 perform	
 the	
 desired	
 action.	
 The	
 result	
 from	
 the	
 remote	
 file	
 system	
 is	
 then	

re-­‐standardized	
 by	
 the	
 file	
 handler	
 to	
 be	
 compatible	
 with	
 the	
 DVCFS,	
 and	
 the	
 result	

is	
 then	
 returned	
 to	
 the	
 user	
 on	
 the	
 client	
 side.	
 The	
 DVCFS allows	
 for	
 robust	
 third	

party	
 applications	
 to	
 perform	
 file	
 and	
 data	
 operations	
 on	
 data	
 from	
 distributed	

sources.	
 The	
 extensibility	
 of	
 DVCFS allows	
 the	
 file	
 systems	
 that	
 the	
 DVCFS

supports	
 to	
 be	
 extended	
 to	
 support	
 more	
 file	
 systems.

W.	
 Jia	

Page 15 of 18	

Figures

DB / CACHE

FILE SYSTEM
1 HANDLER

FILE SYSTEM
2 HANDLER

FILE SYSTEM
3 HANDLER

FILE SYSTEM
4 HANDLER

CLIENT / USER APPLICATION LAYER

CROSS PLATFORM
COMPATIBLE FILE SERVER

REMOTE FILE SERVERS

REMOVE FILE
SERVER 1

REMOVE FILE
SERVER 2

REMOVE FILE
SERVER 3

REMOVE FILE
SERVER 4

FIG 1.

W.	
 Jia	

Page 16 of 18	

USER ADD FILE SYSTEM
EVENT TRIGGERED GIVEN

FILE SYSTEM
CREDENTIALS

FILE SYSTEM WITH
CREDENTIALS

EXISTS IN DB FOR
USER?

CHECK DB FOR GIVEN FILE
SYSTEM AND CREDENTIALS

FOR USER

TEST CREDENTIALS FOR
GIVEN FILE SYSTEM AND

CREDENTIALS

ABLE TO
AUTHENTICATE

WITH GIVEN
CREDENTIALS FOR

GIVEN FILE
SYSTEM?

SAVE GIVEN CREDENTIALS
AND FILE SYSTEM ID TO DB

GET FILE SYSTEM ID
ASSOCIATED WITH GIVEN

FILE SYSTEM

NOTIFY USERNO

LOAD FILE SYSTEM
HANDLER LIBRARIES FOR

GIVEN FILE SYSTEM ID

YES

UPDATE DB WITH NEW
CREDENTIALS FOR GIVEN

FILE SYSTEM ID

YES NO

FIG 2.

W.	
 Jia	

Page 17 of 18	

CRO
SS PLATFO

RM
 CO

M
PATIBLE

FILE SERVER

M
AIN

REQ
UEST

RECEIVER

FILE
SYSTEM

HANDLERS

SEND REQ
UEST

TO
 TARG

ET
FILE SYSTEM

SEND REQ
UEST

TO
 G

ET FILES

DB / CACHE
CLIENT

USER
INTERFACE

REM
O

VE
INDEPENDENT
FILE SYSTEM

PERFO
RM

SPECIFIC

REQ
UEST AND

RETURN
RESULT

RESPO
NSE

PARSE
ENG

INE

STANDARDIZE
RESPO

NSE
STRUCTURE,

SEND TO

CLIENT

REM
O

TE FILE
SERVER

ACTO
R

RETURN
SAVED

CREDENTIALS

G
ET SAVED

CRENDENTIALS

INTERACT W
ITH

CLIENT USER
INTERFACE

FIG
 3.

W.	
 Jia	

Page 18 of 18	

FIG 4.

