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Abstract

This paper discusses primality testing: the problem of determining whether a given
number is prime or composite. First the paper gives a brief motivational statement to
address the importance of testing primality. Next, the paper discusses a particularly
useful test of primality called the Miller-Rabin Primality Test. The first section will
state the Test. The second section of the paper will provide a formal mathematical
proof of correctness for the Miller-Rabin Test. The third section will analyze the
randomized aspect of the Test and provide a probability for its the accuracy.

1 Motivation

Primality testing is the problem of determining whether a given number n is prime or com-
posite. Primality testing has tremendous practical purpose. Much of modern cryptography
systems depend on large prime numbers as a way of encryption. Primality tests provide an
easy way to determine whether a number is prime. Unlike integer factorization, which is a
computationally difficult problem, primality testing is relatively non-difficult.

In 1980, Michael Rabin discovered and formalized a randomized polynomial-time al-
gorithm to test whether a number is prime. The algorithm was subsequently named the
Miller-Rabin Primality Test because of its close association with a prior deterministic algo-
rithm that was written by Gary Miller in 1976. Till this day, the Miller-Rabin Primality
Test is still one of the most practical known primality testing algorithms and is widely used
in various software libraries such as OpenSSL that rely on RSA encryption and decryption.

In this paper we will discuss the Miller-Rabin Primality Test. We will give the steps that
the test takes, provide a mathematical proof of its correctness, analyze its randomization,
and discuss its further implications and corollaries.
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2 Miller-Rabin Primality Test

The Miller-Rabin Primality Test as illustrated by the algorithm in Fig 1 (at end of document)
can be given in algorithmic form as follows: let n > 1 be an odd integer, since n is odd, n−1
is even. We can thus write n − 1 = 2km for integers m odd and k ≥ 1. Choose a random
integer a ∈ {1, 2, . . . , n− 1} called the base. Then take the following steps:

Step 1: let b0 ≡ am mod n. If b0 ≡ ±1 mod n, then stop and declare that n has passed
the test for base a. Otherwise, go to Step 2 with i = 0.

Step 2: for 0 ≤ i < k − 1, consecutively define bi+1 ≡ b2i mod n. For bi 6≡ ±1 mod n,
if bi+1 ≡ 1 mod n, then stop and declare that n has failed the test for base a, if bi+1 ≡ −1
mod n, then stop and declare that n has passed the test for base a, otherwise if bi+1 6≡ ±1
mod n and 0 ≤ i < k − 1, then let i← i+ 1 and repeat Step 2. If i = k − 1, declare that n
has failed the test.

Formally, we define that n passes or fails the test with base a as follows:

Definition 1 (Pass with Base a). For odd integer n > 1, we write n− 1 = 2km for integers
m odd and k ≥ 1. We choose a random integer a ∈ {1, 2, . . . , n− 1}. We say that n passes
the Miller-Rabin Primality Test with base a if either of the two following conditions holds

am ≡ 1 mod n (1)

a2
jm ≡ −1 mod n for some 0 ≤ j ≤ k − 1 (2)

Definition 2 (Fail with Base a). For the same n as defined in Definition 1, we say that n
fails the Miller-Rabin Primality Test with base a if neither of the conditions (1) or (2) holds.

Remark 1. For a chosen base a, in the case that n fails the test, we conclude that n is
composite and that a is a witness of n. In the case that n passes the test, we conclude that
n is “probably prime”.

Remark 2. Note that if for some base a, n passes the test, we can only claims with “high
probability” that the tested number n is prime for base a. This means that it is still possible
for an integer n to pass the test for certain a and be composite. As we will see later, we call
such composite numbers strong pseudoprimes because they succeed in the primality test but
are nevertheless composite. We will discuss later in this paper what it means to claim with
“high probability”. But, as we will see, if n is prime, it will always pass the test for any
base a. In the opposing case where for some base a, n fails the test, then we can say with
probability 1 that the number n is composite. We will prove this fact in the next section.

3 Proof of Correctness

In this section, we provide a formal mathematical proof of correctness for the Miller-Rabin
Primality Test for the case given in Definition 2. Namely,

Theorem 1. If odd composite integer n > 1 fails the Miller-Rabin Primality Test with base
a, as defined in Definition 2, then n is composite with probability 1.
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Before we prove Theorem 1, we give the following intermediary lemma and theorem.

Lemma 1. If p is a prime and p > 2. Let 1 and −1 be the trivial square roots of 1 in modulo
p. There are no non-trivial square roots of 1 in modulo p.

Proof. Suppose that x is a square root of 1 mod p. Then x2 ≡ 1 mod p =⇒ (x− 1)(x +
1) ≡ 0 mod p. This mean that p must divide (x−1)(x+1), but since p is prime, by Euclid’s
lemma, p must divide one of the factors x−1 or x+1. This implies that x−1 ≡ 0 mod p, or
x+1 ≡ 0 mod p, which directly shows that either x ≡ 1 or x ≡ −1 mod p respectively.

With the above lemma, we can now give the crucial theorem that proves the correctness
of the Miller-Rabin test for an integer n that passes the test with base a.

Theorem 2. Let n > 2 be an odd prime, then n− 1 is even and we can write n− 1 = 2km
for odd integer m and k ≥ 1. For every a ∈ {1, 2, . . . , n− 1}, either

am ≡ 1 mod n (3)

or
a2

jm ≡ −1 mod n for some 0 ≤ j ≤ k − 1 (4)

Proof. Define the sequence b0 ≡ am mod n and bi+1 ≡ b2i mod n for all 0 < i ≤ k − 1. We
divide the proof into two cases:

Case (i) b0 ≡ am ≡ 1 mod n, then we have satisfied the case in (3).
Case (ii) b0 6≡ 1 mod n. We first show that if there exists an i, 1 ≤ i ≤ k such that

bi ≡ 1 mod n, then there must exist a j, 0 ≤ j < i, such that bj ≡ −1 mod n. Consider,
for the sake of contradiction, that for b0 6≡ 1 mod n, there exists an i, 1 ≤ i ≤ k such that
bi ≡ 1 mod n, and for all j such that 0 ≤ j < i, bj 6≡ −1 mod n. Then by Lemma 1,
bj ≡ 1 mod n for all 1 ≤ j < i. This would imply that b0 ≡ 1 mod n, a contradiction to

the assumption that b0 6≡ 1 mod n. So it must be that bj ≡ a2
jm ≡ −1 mod n for some

0 ≤ j < i. But since n is prime, by Fermat’s Little Theorem, an−1 ≡ a2
km ≡ bk ≡ 1 mod n,

so there must exist a 1 ≤ j < k such that bj ≡ a2
jm ≡ −1 mod n. This gives directly the

second condition (4). Thus, one of the conditions must be met.

Corollary 1. If n is an odd prime, then it passes the Miller-Rabin Primality Test for all
bases a ∈ {1, 2, . . . , n− 1} with probability 1.

Corollary 1 is self-evident from the proof of Theorem 2 since the conditions for passing
the test, (1) and (2), follow directly from conditions (3) and (4) above.

We are now ready for the proof of Theorem 1. It simply tests a number n against the
contrapositive of Theorem 2. Now the proof for Theorem 1 is quite simple:

Proof of Theorem 1. Let n > 1 be an odd composite integer that fails the Miller-Rabin
Primality Test with base a. By Definition 2, this means that there exists an integer a ∈
{1, 2, . . . , n − 1} such that neither of the conditions (3) or (4) are satisfied. Therefore, by
the contrapositive of Theorem 2, n is not prime, and thus n is composite.
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Proposition 1. Let n > 1 be an odd integer. Factor n − 1 = 2km for m odd and k ≥ 1.
For randomly chosen base a ∈ {1, 2, . . . , n − 1}. If am 6≡ ±1 mod n, and for some i,
0 ≤ i ≤ k − 1 we have that a2

im 6≡ ±1 mod n and a2
i+1m ≡ 1 mod n, then n fails the

Miller-Rabin Primality Test with base a.

Proof. If am 6≡ ±1 mod n then condition (1) is not met. Given this, if for some 1 ≤ i ≤ k−1,
a2

im 6≡ ±1 mod n and a2
i+1m ≡ 1 mod n, then for all 0 ≤ j ≤ i, a2

jm 6≡ −1 mod n,
otherwise, a2

im ≡ ±1 mod n. Also, since a2
i+1m ≡ 1 mod n, then for all i+ 1 ≤ l ≤ k − 1,

a2
lm ≡ 1 6≡ −1 mod n. This would mean that for no 0 ≤ r ≤ k − 1, a2

rm ≡ −1 mod n.
Therefore, condition (2) is also not met, so by Definition 2, n fails the Miller-Rabin Primality
Test with base a.

Remark 3. Proposition 1 is equivalent to Step 2 of the algorithm of the Miller-Rabin test
given in the previous section. This proposition is important because for some values of n, it
allows us to declare that n fails the test with base a without necessarily having to calculate
(2) for all j. In Fig 1, line 19 illustrates this. This fact allows us to run the the algorithm
faster in implementation for some values of n.

Proposition 2. For an odd composite integer n > 1, factor n − 1 = 2km for m odd and
k ≥ 1. Given base a, if for some 0 ≤ i ≤ k − 1, a2

im 6≡ ±1 mod n and a2
i+1m ≡ 1

mod n (i.e this will mean that n has failed the Miller-Rabin test), then gcd(a2
im − 1, n) and

gcd(a2
im + 1, n) gives non-trivial factors of n.

Proof. The equation a2
i+1m ≡ 1 mod n directly implies that (a2

im)2−12 ≡ (a2
im−1)(a2

im+
1) ≡ 0 mod n. This means that (a2

im− 1)(a2
im + 1) = rn for some positive integer r. Since

we know that a2
im 6≡ ±1 mod n, neither a2

im − 1 nor a2
im + 1 divides n. This implies that

gcd(a2
im − 1, n) 6= n and gcd(a2

im + 1, n) 6= n. But any factor of n must also divide the left
hand side, so we have that n, which is composite, must share some non-trivial factor with
both a2

im− 1 and a2
im + 1. To find these factors we can easily calculate gcd(a2

im− 1, n) and
gcd(a2

im + 1, n) using the Euclidean Algorithm.

Remark 4. Note that even though Proposition 2 holds, the Miller-Rabin Primality Test does
not yield a factoring algorithm. This is because for some bases a such that n fails the test,
there does not exist an 0 ≤ i ≤ k − 1 such that a2

im 6≡ ±1 mod n and a2
i+1m ≡ 1 mod n.

Namely, this happens when n is not a pseudoprime, which we will define in the next section.
In this case, we would not be able to apply Proposition 2 and factor n.

4 Likelihood of Failure

We have seen that a number n is composite with probability 1 if the number fails the Miller-
Rabin test for some base a, but if the n passes the test for some base a (the test returns
“probably prime”), n is only prime with “high probability”. In this section, we will give an
exact upper bound for the probability that n is composite if it passes the test for a randomly
chosen a. In particular, we will show that the following theorem holds:

Theorem 3. Let n be an odd composite integer, then n will pass the Miller-Rabin Primality
Test (output “probably prime”) for a randomly chosen base a with probability at most 1

4
.
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Before we give the proof for Theorem 3, we provide the following intermediary steps.

Definition 3 (Pseudoprime Base a). Let n be an odd composite number, call n a pseudo-
prime base a if it satisfies the following condition:

an−1 ≡ 1 mod n (5)

Definition 4 (Strong Pseudoprime Base a). Let n be an odd composite number, and write
n− 1 = 2km with m odd, let b ∈ Z∗n. Call n a strong pseudoprime base a if it satisfies either
of the following conditions:

am ≡ 1 mod n (6)

a2
jm ≡ −1 mod n for some 0 ≤ j ≤ k − 1 (7)

Proposition 3. By Definition 4, since (6) and (7) are equivalent to (1) and (2) in Definition
1 respectively, any composite integer n that passes the Miller-Rabin test with base a is a strong
pseudoprime base a.

Proposition 4. An integer n that is a strong pseudoprime base a is also a pseudoprime base
a.

Proof. If n is a strong pseudoprime base a, then it must satisfy either of the conditions given
by (6) and (7). So either am ≡ 1 mod n or for some j, 0 ≤ j < k, a2

jm ≡ −1 mod n. In
either case, since 1 and −1 are roots of unity mod n, this must mean that an−1 ≡ a2

km ≡ 1
mod n. So, by Definition 3, n is a pseudoprime base a.

Lemma 2. If S = {g, g2, g3, . . . , gφ(n) ≡ 1} is a cyclic group modulo integer n (where φ
is the Euler totient function), then there are exactly d = gcd(k, φ(n)) elements that satisfy
xk ≡ 1 mod n.

Proof. An element gj ∈ S satisfies the equation if and only if (gj)k ≡ gjk ≡ 1 mod n, which,
by the definition of primitive roots, is true if and only if φ(n)|jk. Given d = gcd(k, φ(n)),

this is true if and only if φ(n)
d
|j k
d
. Because φ(n)

d
and k

d
are relatively prime, φ(n)

d
6 |k
d
, so φ(n)

d
|j.

This is true if and only if j is a multiple of φ(n)
d

. There are exactly d such values of j where
1 ≤ j ≤ φ(n).

Lemma 3. Let p be an odd prime, write p − 1 = 2k
′
m′ with m′odd. Then the number of

x ∈ Z∗p that satisfies x2
rm ≡ −1 mod p, for m odd, is equal to 0 if r ≥ k′ and is equal to

2r gcd(m,m′) if r < m′.

Proof. Let g be a generator of Z∗p. The existence of g is guaranteed by the Primitive Root

Theorem. We write x in the form of gj for 0 ≤ j < p − 1. Since g(p−1)/2 ≡ −1 mod p
by the definition of primitive roots and Lemma 1, and p− 1 = 2k

′
m′, the congruence given

in the lemma is equivalent to solving 2rmj ≡ 2k
′−1m′ mod 2k

′
m′ for j. It is clear that for

r > k′ − 1, there is no solutions. If r ≤ k′ − 1, then we can divide out by the gcd of the
modulus and the coefficient of the unknown j, which is 2rd where d = gcd(m,m′). Thus,
this will give a unique solution to j modulo 2k

′−r m′
d

. This means that it has 2rd solutions

modulo 2k
′
m′, and we have completed the proof of the lemma.

5



Proposition 5. For a composite odd integer n, for at most 1
4

of all a ∈ {1, 2, . . . , n− 1}, n
is a strong pseudoprime base a.

Proof. There are three possible cases for n, we will give the proof for each.
Case (i): n is divisible by the square of some prime p. We have pk|n for k ≥ 2. By

Proposition 3, if n is not a pseudoprime base a, then n is not a strong pseudoprime base a.
So by showing that n cannot be a pseudoprime for more than 1

4
of the bases a, 0 < a < n, we

will have showed that they also cannot be strong pseudoprimes more than 1
4

of these bases.
Suppose that for some base a, n is a pseudoprime, then an−1 ≡ 1 mod n. This means

an−1 = mn+ 1 for some positive integer m. Since p2|n, we take this equation mod p2 to get

an−1 ≡ 1 mod p2 (8)

So it suffices to find conditions on a such that (8) is true. Note that for this to hold, it must
be that gcd(a, n) = 1. Note also that Z∗p2 (the group formed by the positive integers coprime

to and less than p2) form a cyclic group of order φ(p2) = p2(1 − 1
p
) = p(p − 1). So, by the

Primitive Root Theorem (which states that a primitive root exists modulo all powers of a
prime p), there exists an integer g such that Z∗p2 = {g, g2, . . . , gp(p−1)}. By Lemma 2, there
are exactly d = gcd(n− 1, p(p− 1)) integers a that satisfy (8). Because p(p− 1) ≤ n− 1, we
know that d ≤ p(p − 1). Since p|n by definition, p 6 |(n − 1), so p 6 |d. This means that d is
at most as large as p − 1. So the proportion of a, 0 < a < n which satisfy 8 is less than or
equal to

p− 1

n− 1
≤ p− 1

p2 − 1
=

1

p+ 1
≤ 1

4
(9)

Note that since n is odd, the smallest possible value of p is 3, which directly gives the right
hand side of (10).

Case(ii): n is the product of two distinct primes p and q, so that n = pq. We write
p− 1 = 2k

′
m′ with m′ odd, and q − 1 = 2k

′′
m′′ with m′′ odd. Without loss of generality, we

assume that k′ < k′′. For an element a ∈ Z∗n to be a base for which n is a strong pseudoprime,
one of the following must be true: (a) am ≡ 1 mod p and am ≡ 1 mod q, or (b) a2

rm ≡ −1
mod p and a2

rm ≡ −1 mod q for some r, 0 ≤ r < k.
For (a): by Lemma 2, the number of a for such that the case (a) holds is given by

gcd(m,m′) · gcd(m,m′′) ≤ m′m′′.
For (b): by Lemma 3, for each r < min(k′, k′′) = k′, the number of a for which a2

rm ≡ −1
mod n is 2r ·gcd(m,m′) ·2r ·gcd(m,m′′) < 4rm′m′′. We have that n−1 > φ(n) = (p−1)(q−
1) = 2k

′+k′′m′m′′. So this directly implies that the fraction of integers a ∈ {1, 2, . . . , n − 1}
for which n is a strong pseudoprime is at most

m′m′′ + (m′m′′ + 4m′m′′ + 42m′m′′ + · · ·+ 4k
′−1m′m′′)

2k′+k′′m′m′′
= 2−k

′−k′′(1 +
4k
′ − 1

4− 1
) (10)

We get the right hand side of (10) by the sum of a geometric series. Since k′′ ≥ k′, either
k′′ > k′ or k′′ = k′.

If k′′ > k′, then (10) is at most 2−2k
′−1(2

3
+ 4k

′

3
) ≤ 2−3 2

3
+ 1

6
= 1

4
as we desire.

If k′′ = k′, then we have that either gcd(m,m′) 6= m′ or gcd(m,m′′) 6= m′′ must be true.
This is because if we hadm′|m andm′′|m, then by the congruence n−1 ≡ 2km ≡ pq−1 ≡ q−1
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mod m′, we have that m′|(q−1) = 2k
′′
m′′, which means m′|m′′, and by the same logic m′′|m′.

But this means that m′ = m′′ and p = 1, a contradiction. So one of the two gcd’s is strictly
less than m′ or m′′, and so must be less than by a factor at least 3 since they are odd. So in
this case, we can replace m′m′′ by 1

3
m′m′′ in (10). So we have the following upper bound:

1

3
2−2

k′

(
2

3
+

4k
′

3
) ≤ 1

18
+

1

9
=

1

6
<

1

4
(11)

Thus we are done with the proof of Case (ii).
Case (iii): n is the product of three or more distinct primes so that n = p1p2 · · · pl, where

pi are prime for all i and pi 6= pj for j 6= i. We write pj − 1 = 2kjmj with mj odd and take
the steps exactly as in Case (ii). Without loss of generality, we assume k1 ≤ kj for all j 6= 1
so that k1 is the smallest kj. Since for Case (iii), l ≥ 3, we obtain in a similar fashion to
Case (ii) the following upper bound for the fraction of a ∈ {1, 2, . . . , n− 1} for which n is a
strong pseudoprime:

2−k1−k2−···−kl(1 +
2lk1 − 1

2l − 1
) ≤ 2−lk1(

2l − 2

2l − 1
+

2lk1

2l − 1
) =

= 2−lk1
2l − 2

2l − 1
+

1

2l − 1
≤ 2−l

2l − 2

2l − 1
+

1

2l − 1
= 21−l ≤ 1

4
(12)

Thus we have proved Proposition 5.

We are now ready to give the proof of Theorem 3:

Proof of Theorem 3. If an odd composite integer n passes the Miller-Rabin test for a par-
ticular base a, then by Proposition 3, this means that n is a strong pseudoprime base a.
Proposition 5 states that there cannot be more than 1

4
of these bases a, 0 < a < n, for which

n is a strong pseudoprime. Thus, since the Miller-Rabin Primality Test chooses a random a,
0 < a < n, the probability of choosing an a that passes the test for n composite is at most
1
4

Corollary 2. For odd integer n > 1, if n passes the Miller-Rabin Primality Test for r
iterations, i.e. r randomly selected bases, then the probability that n is composite is at most
(1
4
)r.

Remark 5. Theorem 3 and Corollary 2 directly implies that if n passes the Miller-Rabin test
for a certain base, the more times we run the test, the less likely the error.

Remark 6. The Miller-Rabin Primality test takes O(log n) multiplications to complete.
These multiplications are required to obtain am for a base a. It then takes at most O(log n)
time to compute a2

jm for 1 ≤ j ≤ k. Given that mod-n multiplication takes O(log2 n) time,
the total running time of the test is O(log3 n). If we run the test r times, the test takes
O(r log3 n). Thus, the Miller-Rabin Primality test is in polynomial time with respect to
log n, and is efficient for most purposes.
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5 Conclusion

In this paper, we have given the algorithm for the Miller-Rabin Primality Test, which is a
randomized polynomial time algorithm for testing whether an integer n is prime or composite.
With randomly chosen base a, we have shown that when an integer n fails the test, it is
composite with probability 1, and when n passes the test, it is prime with probability at
least 3

4
. In the case that n passes the test, we can perform the test multiple times for the

same n. For randomly chosen a this guarantees that our probability of error is at most (1
4
)r

where r is the number of times we repeat the test on n. Because of it’s polynomial run-time
and accuracy, the Miller-Rabin Primality Test remains one of the most widely used primality
tests.
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1: function MillerRabin(n, r)
2: if n > 2 and n is even then
3: return composite
4: end if
5: /* find k and m such that n− 1 = 2km for integers k ≥ 1 and m odd. */
6: k ← 0
7: m← n− 1
8: while m is even do
9: k ← s+ 1

10: m← m/2
11: end while
12: for j ∈ {1, 2, . . . , r} do
13: Choose a ∈ {1, 2, . . . , n− 1} uniformly at random.
14: Compute each value of the sequence {am, a2m, a22m . . . a2k−1m} mod n
15: if am ≡ ±1 mod n then
16: continue
17: end if
18: for i ∈ {1, 2, . . . , k − 1} do
19: if a2

im ≡ 1 mod n then
20: return composite
21: else if a2

im ≡ −1 mod n then
22: break
23: end if
24: end for
25: if a2

km ≡ an−1 6≡ 1 mod n then
26: return composite
27: end if
28: end for
29: return probably prime
30: end function

Figure 1: The Algorithm for the Miller-Rabin Primality Test on integer n for r cycles,
recreated by the author.
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